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COUNTEREXAMPLES 
CONCERNING A WEIGHTED L2 PROJECTION 

JINCHAO XU 

ABSTRACT. Counterexamples are given to show that some results concerning a 
weighted L2 projection presented earlier by Bramble and the author are sharp, 
i.e., that certain error and stability estimates are impossible in some cases. 

1. INTRODUCTION 

Motivated by the numerical solution of second-order elliptic boundary value 
problems with discontinuous coefficients, certain weighted L2 projections were 
studied in [1]. Owing to some technical difficulties, the error and stability es- 
timates obtained in [1] are contingent upon some additional assumptions. In 
this paper, we study the problem further. The results we obtain are negative 
and demonstrate that the main results in [1] cannot be improved. 

Let 0 c Rd ( 1 < d < 3) be a bounded domain. For simplicity, we assume 
that 0 is a polyhedral domain, i.e., an interval for d = 1, a polygon for d = 2 
and a polyhedron for d = 3. Assume the domain 0 admits the following 
decomposition: 

i= 1 

where Qi are mutually disjoint polyhedrons. 
Given a set of positive constants {wo}Q1 , we introduce two weighted inner 

products, 

(1.2) (u, V)L2(Q) = (wiJ uvdx 

and 

(1.3) (u, = )H(Q) Z0i Vu*Vvdx, 
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with the induced norms denoted by 11H11L2 (Q) and I IHI (Q), respectively. More- 

over, we define a full weighted H1 norm by 

II IIH(Q) = II IIL2(Q) + I.12 

If w0i = 1 for each i, we have the usual Sobolev space and the symbol co will 
then be dropped. 

Next we introduce a finite element space. For 0 < h < 1, let h be a 
triangulation of Q with simplices K of diameter less than or equal to h. An 
additional assumption is that this triangulation be lined up with each subdomain 
Qi. Namely, Qi is the union of a set of elements of 8h. We assume that the 
family {I9h} is quasi-uniform, i.e., there exist positive constants co and c1 
such that 

hm maxKE9, hK max K< co, h < C, Vh. 
KEA/ PK mnKEm h- 1' 

Here, hK is the diameter of K and PK the diameter of the largest ball con- 
tained in K. Corresponding to each triangulation 8 , we define a finite element 
subspace Sh C Ho (Q) that consists of continuous piecewise (with respect to the 
elements in Yh) linear polynomials vanishing on 0Q. For G c Q, Sh(G) de- 
notes the space of functions in Sh restricted to G. 

The weighted L2 projection Q'O : L2(Q) 4 Sh is defined by 

(1.4) (QhUv)L2(Q)= (U ,v)L2(Q), VU E L (2),VeSh. 

If w0i = 1 for all i, we get the usual L2 projection, denoted by Qh. The 
following estimate is known (cf. [1, 3] and the reference cited therein): 

I|u - QhUIIL2(Q) + hIQhu1H1(Q) < Ch u1H(Q) , Vu E Hl (Q). 

We are interested in similar estimates for the weighted L2 projections with 
the regular norms replaced by the weighted norms, and with the constant C 
independent of the weights cow's. This problem has been carefully studied in 
[1]. 

Before we review the results of [1], we introduce the following notation: 

x < y, f > g and u v 

meaning, respectively, 

x < Cy, f > cg and cv < u < Cv, 

where C and c are positive constants independent of the variables appearing 
in the inequalities and the other parameters related to meshes, spaces and espe- 
cially the weights co 's. We shall use the term "interface" to denote the union 
of the boundaries of all Qi inside of Q. 

The first result shows that optimal estimates can be obtained in a special case. 
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Theorem 1.1 [1]. Assume that d = 1, or that the decomposition (1.1) has no 
internal cross points, i.e., there is no point on the interface that belongs to more 
than two Qi 's. Then, for all u E H1 (Q), 

(1.5) II(I-Qh )uIIL2 (Q) + hIQ'uIH (Q) < h I u (Q) 

If there are internal cross points, nearly optimal estimates can be obtained 
under additional conditions. 

Theorem 1.2 [1]. If for all i, the (d - 1)-dimensional Lebesgue measure of 
a fQi n a is positive, then for all u E HOl (Q) 

(1.6) 11(- Qh )uIIL2(Q) + hIQh'uIH.(Q) < h IloghI2 |IUIH(Q). 
In order to obtain estimates without the restriction on the measure of ORf n 

&Q, as in the above theorem, we consider a special class of functions instead 
of all of H' . For a given triangulation 4, we consider a finer quasi-uniform 
mesh Th with h < h which is obtained by refining - in such a way that 

Sh C Sh. 

Here, Sh c Hl (Q) is the finite element space corresponding to 8h. 
We have shown previously: 

Theorem 1.3 [1]. For any u E Sh, 

h lg JuH,(j2,zf d =2; 
II (I - Qh'o)UIILO() + hIhuHQ 

I h hUI H(Q) if d=3. 

The purpose of this paper is to show that the assumption in Theorem 1.2 
concerning the measure of &0i n &Q is necessary and that the estimate for 
d = 3 in Theorem 1.3 is sharp. 

2. COUNTEREXAMPLES 

In Theorem 1.2, the estimate (1.6) is established only under the condition 
that all the subregions meet the boundary of the original region on a subset 
of a positive (d - 1)-dimensional measure. A natural question is then if this 
constraint is essential. The following two theorems show that this is the case. 

Theorem 2.1. Assume that there is an io such that the (d - 1)-dimensional 
Lebesgue measure of 0io n 00 is zero. Then, there is no constant C indepen- 
dent of the oi 's such that 

(2.1) II(I - Qh )UIIL2(Q) < CIUI H1(Q) Vu E Ho (Q). 

Proof. For convenience, we shall use meask(G) to denote the k-dimensional 
Lebesgue measure of G. 
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Case 1: d = 3 and meas1 (a i&n0Q) = 0. Without loss of generality, we assume 

that io = 1 and that 1 is the unit cube (0, 1)3. It suffices to consider two 
cases. In the first, there is another subdomain, 2' that touches Q only at the 
origin 0. In the second case, 0 E dQ. Because of the similarity in the proofs, 
we only present the proof for the first case. 

Assume that there is a constant C independent of the w1 's such that (2.1) 
holds. By letting coi = co for i > 2, we then would have 

I( - Qh')UIIL 2(nuQ02) < C(IH1(QIUQ2) + coIUIH1(Q\(QIUQ2))). 

In particular, the above inequality implies that IIQh/UIIL2(Q UQ2) is bounded with 

respect to co, hence it has a subsequence that converges to a function Qh'U E 
Sh (Ql U 92). Consequently, letting co - 0 yields 

(2.2) Ilu - Qh UIIL2(QuQ2) < CIUIH(Q UQ ), VU E Ho (). 

Take a function q E C??(RI1) such that q= 0 for x < 1 for x > 1 
and kI$'(x)I < 4 for any x. It is easy to see, for any e > 0, that there exists a 
function ute E Ho (Q) such that 

u O (lx) in Q1, 
le 0 in Q2 

For example, in the rest of Q, u, can be defined by solving -Au, = 0 with 
some properly prescribed continuous boundary data. A direct calculation shows 
that 

(2.3) |u|IH1(Q UQ2) 
= 

IUeIH1(Qj) < 

and 
IIUe UIIL2(QUQ2) < 2 

where ul equals 1 in 0 and 0 in Q2. We first observe that IIQhUCIIL2(QUQ2) 
is bounded with respect to e. Hence, there exists a function Wh E Sh(Qj U Q2) 
and a sequence {em } 0} such that 

m IIQh U, WhI1L2(QUQ) =0. 

Consequently, we conclude from (2.2), with u. = u, and (2.3) that 

U Wh IIL 2(Q UQ2) 
=0. 

This implies ui = Wh, which is a contradiction, since Wh is continuous at 0 
but ui is not. 

2 Case 2:d = 2. Let Q1 and Q2 be similar as before, but Q1 =(0, 1) . In this 
case, the construction of an appropriate u, is more difficult. Using the fact that 
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Cr is dense in H , we can find a sequence of smooth functions q$ on 0Q 
that vanish in a neighborhood of (0, 0) and satisfy 

(2.4) lim 11/ - 1 1Hp () = 0. 

As we did above, it is easy to find a ue E Hl (Q) such that 

(2.5) -Aue = 0 in Q1, 
1ue=q on &1 

and 
ue = 0 in 2. 

Notice that uie - 1 is harmonic in Q1, and therefore, as e -+0, 

(2.6) IUeIH1(QUQ) = Iu- - il 0. 

Here we have used (2.4). 
The rest of the proof is the same as in the first case. 

Case 3: d = 3 and meas2(01 n 0&) = 0. In this case, we may assume that 

Q?o=0 =(0,1)3 and 

01 nl 0&={(0,0,x3): 0<X3< 1}. 

We can construct a function v. E Hl (Q) satisfying 

V,(X1,X2,X3)=U,(XX,2) 0<xi? 1, 1= 1,2,3, 

where ue satisfies (2.5). 
By (2.6), we have, as e -. 0, 

IV1IH'(Q1) = IU1IH1((O,1)2) *- 0. 

The rest of the proof is similar as above. 

The following result concerns the sharpness of the estimate in Theorem 1.3 
for d = 3. 

Theorem 2.2. Assume that d = 3 and that there is an index io such that 
meas (a0i n 00) = 0. Then, if Ch is a constant satisfying 

(2.7) 2( - Q )uIIL2(Q) < Ch ) VU E Sh, 

there holds 
Ch > h . 

Proof. As in the proof of Theorem 2.1, there exists, for any u E Sh, a function 

Qh'u e Sh(Ql U Q2) such that 

(2.8) IIu 
-QhUIIL2(QUQ2) 

< ChIUIH'(QUQ). 



568 JINCHAO XU 

We now take uh E Sh such that uh = 1 at all the nodes except 0 on 0 

and uh = 0 at all the nodes on 02 . A direct computation shows that 

I 
hIHH(QUQ2) 

Using an argument similar to that in the proof of Theorem 2.1, we can find a 
Wh E Sh such that 

lim h-h 
- 

lhUhL2 (QIUQ2) = Ila 
- 

WhIIL2(Q UQ2) h > 0. 

Consequently, for sufficiently small h, we have 

Ch > h 2 I(I-Q )L2(QUQ2) > ah 

This completes the proof. 

Remark. The questions concerning logrithmic factors appearing in the estimates 
of Theorems 1.2 and 1.3 are more subtle. The author does not know whether 
they are necessary. 
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